

Light-Induced Metastability in Hydrogenated Nanocrystalline Silicon Solar cells

Guozhen Yue, Baojie Yan, Jeffrey Yang, and Subhendu Guha

United Solar Ovonic Corporation, Troy, MI 48084

Outline

- 1. Review of the results reported in the last team meeting
 - (a) spectral dependence of light-induced degradation in nc-Si:H solar cells
- 2. New experimental results-Electrical bias dependence
 - (a) Forward current injection
 - (b) Light-soaking under reverse bias
- 3. Microscopic Model for the metastability in nc-Si:H solar cells

Light soaking under lights with different spectra

Light soaking under lights with different spectra

For nc-Si:H solar cell:

- No light-induced degradation was found under the red light.
- More degradation was under the blue light than under the white light, which is due to more absorption in the amorphous phase and more absorption near the *i/p* interface.

For a-SiGe:H solar cell:

- Light-induced degradation was observed under all three light sources.
- The blue light produced the highest degradation, the white light in the middle, the red light the lowest. The difference is mainly due to the non-uniform absorption.

Forward current soaking experiment

Table I. Behavior of V_{oc} and FF for an a-Si:H (Cell 1), an a-SiGe:H (Cell 2) and three nc-Si:H (Cells 3-5) cells under various forward bias conditions in the dark.

Sample	State	V _{oc}	$\Delta^{ m V_{oc}}$	FF	Δ FF/FF _{in.}
		(V)	(mV)		(%)
a-Si:H	Initial	0.998		0.696	
Cell 1	$20 \text{ hr}, 1\text{V}, 3 \text{ mA/cm}^2$	0.978	-20	0.664	-4.6
a-SiGe:H	Initial	0.623		0.638	
Cell 2	20 hr, 1V, 72 mA/cm ²	0.597	-26	0.596	-6.5
nc-Si:H	Initial	0.469		0.575	
Cell 3	$15 \text{ hr}, 0.5 \text{V}, 7 \text{ mA/cm}^2$	0.469	0	0.579	+0.7
	Initial	0.469		0.591	
Cell 4	15 hr, 1V, 58 mA/cm ²	0.470	1	0.588	-0.5
	Initial	0.472		0.587	
Cell 5	64 hr, 1V, 57 mA/cm ²	0.474	2	0.590	+0.5

Light soaking under reverse electrical bias

Table II. V_{oc} and FF values for the a-Si:H (Cells 1, 2)and nc-Si:H (Cells 3, 4) cells before and after AM1.5 light soaking at 25 °C with and without a -2 V bias.

Sample	State	V _{oc}	ΔV_{oc}	FF	Δ FF/FF _{in}
		(V)	(mV)		(%)
a-Si:H	Initial	0.984		0.695	
Cell 1	69 hr, no bias	0.954	-30	0.635	-8.6
	Initial	0.985		0.704	
Cell 2	69 hr, -2 V	0.983	-2	0.708	+0.6
nc-Si:H	Initial	0.476		0.591	
Cell 3	63 hr, no bias	0.467	-9	0.559	-5.4
	Initial	0.476		0.594	
Cell 4	63 hr, -2 V	0.427	-49	0.523	-12.0

Table III. J-V characteristics of the initial (In.) and degraded (Deg.) nc-Si:H solar cells. The light-soaking was done under one sun white light with various bias conditions of -1 V, short circuit, open circuit, and +1 V at 50 °C.

Cell	Bias	Status	V _{oc}	Λ V _{oc}	FF	۸FF	FF _b	Λ FF _b	FF _r	Λ FF _r
No.	(V)		(V)	(mV)		$\overline{F}F_{in}$		$\overline{F}F_{bin}$		$\overline{F}F_{rin}$
						(%)		(%)		(%)
1	-1 V	In.	0.479		0.634		0.663		0.664	
		Deg.	0.464	-15	0.563	-11.2	0.624	-5.9	0.579	-12.8
2		In.	0.479		0.633		0.659		0.664	
		Deg.	0.464	-15	0.566	-10.6	0.624	-5.3	0.580	-12.7
3	Short	In.	0.483		0.618		0.664		0.660	
	circuit	Deg.	0.472	-9	0.580	-6.1	0.636	-4.2	0.617	-6.5
4		In.	0.480		0.631		0.663		0.663	
		Deg.	0.474	-6	0.574	-9.0	0.638	-3.8	0.599	-9.7
5	Open	In.	0.477		0.622		0.650		0.653	
3	circuit		0.477	-7	0.600	-3.5	0.617	-5.1	0.622	17
6	Circuit	Deg.		-/		-3.3		-3.1		-4.7
6		In.	0.478	O	0.628	4.0	0.655	5.6	0.655	<i>5</i> 0
		Deg.	0.470	-8	0.603	-4.0	0.618	-5.6	0.622	-5.0
7	+1 V	In.	0.482		0.608		0.655		0.655	
		Deg.	0.467	-15	0.587	-3.5	0.607	-7.3	0.621	-5.2
8		In.	0.478		0.629		0.656		0.651	
		Deg.	0.465	-13	0.604	-4.0	0.612	-6.7	0.624	-4.1

UNI-SOLAR®

Light-induced changes as a function of electrical bias

UNI-SOLAR®

Quantum efficiency loss (QE(-1V)/QE(0))of nc-Si:H solar cells after light soaking under various bias conditions

UN-SOLAR®

Photo-assisted annealing effect for the enhanced degradation by reverse bias.

UNI-SOLAR®

Table IV. J-V characteristics of the nc-Si:H single junction solar cells before (In.) and after (Deg.) light-soaking with a reverse bias of -1.5 V at different light spectra. Light-soaking was carried out at 50° C for 309 hours. The intensity of the red, blue, and white lights was adjusted to produce the same short circuit current in the cells.

Cell	Light-soaking	Status	V _{oc}	$\Delta^{ m V_{oc}}$	FF	
No.	Conditions		(V)	(mV)		- (%)
1	Red light	In.	0.472		0.593	
	-1.5 V	Deg.	0.472	0	0.598	+0.8
2	Blue light	In.	0.468		0.585	
	-1.5 V	Deg.	0.438	-30	0.539	-7.9
3	White light	In.	0.472		0.587	
	-1.5 V	Deg.	0.405	-67	0.527	-10.2

Summary of experimental results

- 1. Light-induced degradation was observed in nc-Si:H solar cells. The degradation is in the range of 0-15%.
- 2. Red light with photon energy less than the a-Si:H band gap does not cause degradation in nc-Si:H solar cells. Blue light causes more degradation than while light for the same light intensity.
- 3. No forward current induced degradation in nc-Si:H.
- 4. An electrically reverse bias enhances the light-induced degradation in nc-Si:H solar cells
- 5. The reverse bias enhanced degradation appears more for red than for blue light regions on the QE spectra.
- 6. The reverse base enhanced degradation can be partially recovered under open circuit condition.
- 7. Under a reverse bias, white light causes more degradation than blue light.

Band diagram for a crystalline/amorphous/crystalline region in nc-Si:H with zero average electric field

Band diagram for a crystalline/amorphous/crystalline region in nc-Si:H with an electric field.

Summary of the proposed model

- 1. Light-induced degradation is mainly in the amorphous and grain boundary regions
- 2. A crystalline/amorphous/crystalline region equivalent to a back-to-back diode structure
- 3. Reverse bias does two things: reduce the electric field in the forward biased diode and cause carries accumulation at the grain boundary region. Both mechanisms result in the reverse bias enhanced light-induced degradation
- 4. For an a-Si:H/nc-Si:H double-junction cells, the nc-Si:H mainly see the low energy photons and no light induced degradation expected.

Remaining fundamental questions:

- 1. What determine the stability of nc-Si:H solar cells?
- 2. Are there more degradation for cells with high amorphous volume fraction?
- 3. Do light-induced changes occur in the amorphous phase or at grain boundary regions?
- 4. Are there any new defects generated after light soaking? What kind of defect?

Thanks for the financial support from NREL and various technical supports from the team members